Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xue-Mei Li, Shan-Shan Gu and Shu-Sheng Zhang*

College of Chemistry and Molecular
Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong,
People's Republic of China
Correspondence e-mail: shushzhang@126.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.060$
$w R$ factor $=0.178$
Data-to-parameter ratio $=16.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
1,6-Bis[3-(hydroxymethyl)phenoxy]hexane

The molecule of the title compound, $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{4}$, has a center of symmetry. Molecules are linked into a zigzag chain via an O H. . O hydrogen bond.

Comment

Diethers with terminal hydroxyl radicals can be used to synthesize linear or cyclic ethers in a highly efficient and convergent manner (Davies et al., 2000). The method permits a high level of control, affording non-symmetrical compounds. In addition, the procedure can be used for the stereocontrolled synthesis of cyclic ethers (Diaz et al., 2001). Several kinetic studies of the OH -initiated degradation of diethers have been reported by Moriarty et al. (2003). As part of a study on the reactivity of ethers, we have determined the structure of the title compound, (I).

(I)

The title molecule has a crystallographically imposed center of symmetry. All bond lengths and angles in (I) have normal values (Allen et al., 1987). In the crystal structure, molecules are linked into a zigzag chain along the [201] direction by a weak $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond (Fig. 2 and Table 2).

Experimental

The title compound was obtained according to the literature method (Fekner et al., 2004). To a solution of 3-hydroxymethylphenol (1.5 g,

Figure 1
The structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. The suffix A corresponds to symmetry code (1-x,2-y,1-z).

Received 20 December 2005
Accepted 3 January 2006

12 mmol) in $\mathrm{EtOH}(90 \mathrm{ml})$ was added $10 \mathrm{~mol} L^{-1} \mathrm{NaOH}(1.2 \mathrm{ml}$, $12 \mathrm{mmol})$, followed by 1,6 -dibromohexane ($1.5 \mathrm{~g}, 6 \mathrm{mmol}$). The reaction was refluxed for 26 h , cooled to room temperature, and diluted with water (30 ml). The brown mixture was subsequently extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to give an off-white solid. Purification by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Me}_{2} \mathrm{CO} 4: 1, v / v\right)$ gave the title compound as a slightly pink solid. Colourless single crystals were obtained by slow evaporation of an EtOH solution at room temperature over a period of two weeks.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{4} \\
& M_{r}=330.41 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=14.7385(17) \AA \\
& b=4.9176(6) \AA \\
& c=12.7760(14) \AA \\
& \beta=103.749(2)^{\circ} \\
& V=899.45(18) \AA^{3} \\
& Z=2
\end{aligned}
$$

$$
\begin{aligned}
& D_{x}=1.220 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 1296 \\
& \quad \text { reflections } \\
& \theta=2.8-23.5^{\circ} \\
& \mu=0.08 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Plate, colourless } \\
& 0.34 \times 0.23 \times 0.06 \mathrm{~mm}
\end{aligned}
$$

Data collection

Siemens SMART 1000 CCD area-	1756 independent reflections
\quad detector diffractometer	1281 reflections with $I>2 \sigma(I)$
ω scans	$R_{\text {int }}=0.017$
Absorption correction: multi-scan	$\theta_{\max }=26.0^{\circ}$
$\quad(S A D A B S ;$ Sheldrick, 1996$)$	$h=-18 \rightarrow 9$
$T_{\min }=0.972, T_{\max }=0.995$	$k=-5 \rightarrow 6$
4749 measured reflections	$l=-15 \rightarrow 15$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& \begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0794 P)^{2}\right. \\
\quad+0.2564 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.31 \mathrm{e}^{2} \AA^{-3} \\
\Delta \rho_{\min }=
\end{array}-0.22 \mathrm{e}^{-3}
\end{aligned}
$$

Figure 2
The packing, viewed along the c axis. Hydrogen bonds are indicated by dashed lines.
structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

This project was supported by the Project of Educational Administration of Shandong Province (No. J04B12) and the Outstanding Adult-Young Scientific Research Encouraging Foundation of Shandong Province (No. 2005BS04007).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, S1-S19.

Davies, J. E., Hope-Weeks, L. J., Maye, M. J. \& Raithby, P. R. (2000). J. Chem. Soc., Chem. Commun. pp. 1411-1412.
Diaz, D., Martin, T. \& Martin, V. S. (2001). Org. Lett. 3, 3289-3291.
Fekner, T., Gallucci, J. \& Chan, M. K. (2004). J. Am. Chem. Soc. 126, 223-236.
Moriarty, J., Sidebottom, H., Wenger, J., Mellouki, A. \& Bras, G. L. (2003). J. Phys. Chem. A, 107, 1499-1505.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL (Version 5.1). Bruker AXS, Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-Ray Systems, Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

